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ABSTRACT 

A unidirectional fiberglass epoxy composite specimen is 

modelled as a homogeneous transversely isotropic continuum plate 

medium.  Acousto-ultrasonic non-contact input-output characteri- 

zation by tracing SV waves in the continuum is studied theoreti- 

cally with a transmitting and a receiving transducer located on 

the same face of the plate.  The isotropic plane of the equi- 

valent continuum plate model lies in the midplane of the plate 

and is parallel to the top and bottom faces of the plate. 

The single reflection problem for an incident SV wave at a 

stress-free plane boundary in a semi-infinite transversely iso- 

tropic medium whose isotropic plane is parallel to the plane 

boundary is analyzed first.  For all angles of incidence, the 

angle of reflection of the SV wave is equal to the angle of inci- 

dence of the SV wave.  It is found that an obliquely incident SV 

wave results in a reflected SV wave and a reflected P wave for an 

angle of incidence of the incident SV wave less than the critical 

angle 52°.  when the angle of incidence of an incident SV wave is 

equal to or greater than the critical angle, there exists only an 

SV wave in the medium as the reflected P wave degenerates into a 

surface wave travelling parallel to the plane boundary.  The     Ion For     "^ 

■-RA&I    rar amplitude of the surface wave decays exponentially with the per-  *       *S -.«a 

pendicular distance from the plane boundary.  The amplitude       '      «-* 
a i 

_Dlstrlbut1on/ / ' 

AvallaMlUy £©§.«« 
jAvail SBö/ÖK

0
"""" 

IMst. I   Special, 

*' 



ratios of the reflected P and SV waves to the incident SV wave as 

a function of the angle of incidence are plotted from zero to the 

critical angle.  The amplitude ratio of the reflected SV wave is 

found to be minus one when the angle of incidence is equal to or 

greater than the critical angle.  The balance in energy flux nor- 

mal to the plane boundary is checked. 

Accordingly, the delay time for wave propagation between the 

transmitting and the receiving transducers is computed as if the 

SV waves were propagating in a half space. It is found that the 

directional dependence of the phase velocity of the SV wave pro- 

pagating in the transversely isotropic medium has a significant 

effect on the delay time, as opposed to the directional indepen- 

dence of the phase velocity of a shear wave propagating in an 

isotropic medium. 

The displacements associated with the SV wave in the plate 

and which may be detected by the non-contact receiving transduc- 

er are approximated by an asymptotic solution for an infinite 

transversely isotropic medium subjected to a harmonic point load. 

The polar diagrams for the directivity function of the stresses 

due to SV waves in the plate are shown at frequencies of 0.75, 

1.50 and 2.25 MHz. 



This study enhances the quantitative understanding of acous- 

to-ultrasonic non-destructive evaluation (NDE) parameters such as 

the stress wave factor (SWF) and wave propagation in fiber rein- 

forced polymeric, ceramic or metallic composites, which can be 

modelled as transversely isotropic media. 



INTRODUCTION 

Fiber reinforced composite materials are attractive materials 

for aerospace applications because of their high specific 

mechanical properties.  It has been shown that many composites, 

such as fiberglass epoxy composites or fiber reinforced ceramics 

as shown in Fig. 1, may be modelled as a homogeneous transversely 

isotropic continuum [1].  In this work, acousto-ultrasonic (AU) 

non-contact input-output characterization of a homogeneous trans- 

versely isotropic elastic plate is investigated by tracing SV 

waves. 

First, the single reflection problem of an incident SV wave 

at a stress-free plane boundary in a semi-infinite transversely 

isotropic medium whose isotropic plane is parallel to the plane 

boundary is considered.  At such boundaries, the conditions for 

the existence of wave mode conversion, critical angle phenomena, 

reflected surface wave, the angles of reflection of the reflected 

waves, and the amplitude ratios of the reflected waves to the 

incident wave are derived. 

Second, the SV wave input-output relations are derived when 

multiple reflections occur at the top and the bottom faces of the 

plate.  The delay time between input and output versus the dis- 



tance separating the transmitting and receiving transducers is 

analyzed.  The directivity functions of the stresses associated 

with the SV waves are computed.  And, the output displacement at 

the non-contact receiving transducer is approximated by an 

asymptotic solution. 

This investigation should enhance the quantitative understan- 

ding of AU NDE parameters such as the stress wave factor.  It 

also provides the potential for assisting in the development of 

better NDE schemes utilizing the SWF as well as other AU parame- 

ters for the characterization of fiber reinforced polymeric, 

metal and ceramic composites. 



SINGLE REFLECTION PROBLEM AT STRESS-FREE PLANE BOUNDARY IN 

SEMI-INFINITE TRANSVERSELY ISOTROPIC MEDIUM WHOSE ISOTROPIC PLANE 

IS PARALLEL TO PLANE BOUNDARY FOR INCIDENT SV WAVE 

1.  Reflected P and SV Waves 

For a homogeneous, linearly elastic transversely isotropic 

continuum, the number of independent elastic constants is five 

[1].  Define a coordinate system (x, y, z) for a semi-infinite 

transversely isotropic medium whose isotropic plane is parallel 

to the plane boundary where the reflection occurs as follows: the 

plane boundary contains the x and y axes, and the z axis is the 

zonal axis of the medium, which is in the direction parallel to 

the fiber direction shown in Fig. 1.  Also, see Fig. 2.  The gen- 

eralized Hooke's law is written, relative to the (x, y, z) coor- 

dinate system, as [1] 

rxx = cllu>x + c12v>y + c13w>z 

ryy = c12u-x + cllv>y + c13w>z 

rzz = c13u'x + c13v>y + C33w,z 

rxz = c44(u>z + w>x) t1) 

Tyz  = C44(v,z + w,y) 

rxy = c66(u>y + v>x) 

where rrs (r, s = x, y and z) are the normal (r = s) and shear 



(r *  s) stresses with respect to the coordinate system (x, y, z); 

u, v and w are the displacement components of a point in the 

medium along the x, y and z axes, respectively; "," denotes par- 

tial differentiation with respect to the variable which follows; 

and £\\,   C^2> Cl3> ^33 anc* ^44 are t'ie fi-ve independent elastic 

constants where Cgg = 1/2(C^]^ - C^). 

Let a progressive wave be represented as [2] 

(u, v, w) = A (Px> Py, Pz) exp{iw(Sxx + Syy + Szz - t)}      (2) 

where Sx, Sy and Sz are the components of the slowness vector, 

which is in the same direction as the normal to the wavefront and 

whose magnitude is equal to the reciprocal of the magnitude of 

the phase velocity [1], along the x, y and z axes, respectively; 

Px, Py and Pz are the components of a unit vector of particle 

displacement along the x, y and z axes, respectively; A is the 

amplitude of particle displacement; t denotes time and w denotes 

radian frequency.  It follows from Eqs. (1) and (2) that the 

stresses can be represented as 

rxx = iwA[cllsxpx + c12sypy + C13SzPz]exp{iw(Sxx + Syy + Szz - t)} 

ryy - iwA[C12SxPx + CnSyPy + C13SzPz]exp{io>(Sxx + Syy + Szz - t)} 

rzz - iwA[C13SxPx + C13SyPy + C33SzPz]exp{iw(Sxx + Syy + Szz - t)} 



rxz = iwA[C44SzPx + C44SxPz]exp{iw(Sxx + Syy + Szz - t)}      (3) 

Tyz = iwA[C44SzPy + C44SyPz]exp{iw(Sxx + Syy + Szz - t)} 

rxy = io>A[C66SyPx + C66SxPy]exp{iw(Sxx + Syy + Szz - t)} 

The stress boundary conditions on the stress-free plane 

boundary require that [2] 

'xz(I) + 'xz(R) = 0 

ryz(I> + ryz(R) " ° (4) 

^zz(I) + rzzW. - 0 

where rrz,(
I) (r = x, y and z) represent stresses on the plane 

boundary associated with the incident SV wave, and rrz^
R) (r = x, 

y and z) represent stresses on the plane boundary associated with 

the reflected waves. 

In order to satisfy Eq. (4), it is required [2] that the 

frequency, u,   of the reflected wave be equal to that of the 

incident wave and that [2] 

sx(D - sxW 



As a result of Eq. (5), the slowness vectors of the incident and 

reflected waves lie in a plane called the plane of incidence. 

This analysis can be simplified by assuming that the plane of 

incidence is the x - 0 plane; that is, the slowness vectors of 

the incident and reflected waves are in the x = 0 plane, as shown 

in Fig. 2.  Then it follows from Eqs. (5) that 

SX
(I) = sx(R) ' 0 (6) 

It has been shown [3] that, except along the principal mate- 

rial axes, P waves or SV waves travelling in a plane containing 

the zonal axis, z axis, of a transversely isotropic medium are 

quasi-longitudinal and quasi-transverse, respectively; that is, 

in general, the components of the unit vector of particle dis- 

placement for either the P or SV waves along the y and z axes, 

Py and Pz, do not vanish; whereas the components along the x 

axis, Px, do vanish.  Therefore, it follows from Eqs. (3) and (6) 

that stresses associated with P and SV waves are 

rxz ~ Txy  ° 

rxx * °: ryy' *  °: Tzz * °'<   ryz * ° 

(7) 

It has also been shown that an SH wave travelling in a plane 

containing the zonal axis.z axis, of a transversely isotropic 



medium possesses a transverse displacement only, that is, for the 

coordinates in Fig. 2, (Px, Py, Pz) = (1, 0, 0) [3].  Therefore, 

it follows from Eqs. (3) and (6) that the stresses associated 

with SH waves are 

ryz  rxx  Tyy ~ rzz - ^ 

rxy ^ 0; rxz * 0 
(8) 

Assume that an SV wave is incident on the plane boundary, the 

x-y plane in Fig. 2.  It follows from Eqs. (4) and (7) that 

'yz(I) *  0 ;  rzz(D * 0 

m (9) 

'xz(I) = 0 

As a result of Eq. (9), it is known from Eq. (4) that rxzW is 

equal to zero.  This means that no SH wave will be reflected back 

into the medium because a reflected wave of the SH type would 

result in a nonzero value of the stress rxz.  So, Eqs. (4) 

reduce to 

'yz(I) + ryzW  = 0 

'zz(I) + rzzW  = 0 
(10) 

10 



Since either a reflected P wave or a reflected SV wave results in 

nonzero values of the stresses rvz' ' and TZZ
(-   ',   it is therefore 

concluded from Eqs. (7) and (10) that both a P wave and an SV 

wave may be reflected back into the medium. 

2.  Slowness Surface for P and SV Waves 

The equations of motion relative to the coordinate system (x, 

y, z) are [1] 

Txx,x + Txy,y + Txz,z       pu,tt 

Txy,x + ryy,y + ryz,z " ^v'tfc <n> 

Txz,x + ryz,y + Tzz,z "" Pw>tt: 

where the body forces are identically zero for the homogeneous 

solution. 

It follows from Eqs. (1), (2) and (11) that the following 

equations of motion are obtained: 

[CUSX
2 + C66Sy

2 + C44SZ
2 - p]?x  + (C12 + 

c66)SxSyPy 

+ (C13 + C44)SXSZP2 - 0 

11 



<c12 + c66>sxsypx + tC66sx2 + cllsy2 + c44sz2 " P]py     (12) 

+ (c13 + c44)syszPz = 0 

(C13 + C44)SXSZPX + (C13 + C44)SySzPy +  [C44(SX
2 + Sy

2) 

+ C33SZ
2   -p]Pz - 0 

The condition for the existence of the plane wave  solution is 

expressed by setting the determinant of the matrix of the coef- 

ficients  of Px,   P„ and Pz  in Eq.   (12)   equal  to zero   [1]: 

Cc11sx2 + c66sy2 + c44sz2 ^    <c12 + c66>sxsy 

<c12 + c66>sxsy 

<c13 + c44)sxsz 

cc13 + c44)sxsz 

tc66sx2 + c11sy2 + c44sz2 -^    <c13 + c44>sysz 

(C13 + c44)sysz [C44<SX
2 + Sy

2> + C33SZ
2 -Pi 

(13) 

By expanding Eq. (13), three sheets of slowness surface are 

obtained.  The slowness surface for an SV wave is given in [3] as 

cll + c44            C44 + c33 
( )(SX

2 + Sy
2) + (  •) s5 

1/2 (Cll - C44)(SX
2 + Sy

2) + (C33 - C44)SZ
2 

(14) 

+ 4(SX
2 + Sy

2)Sz
2 

(cll " c44)(c33 " c44) 

(C13 + c44)- 
1/2 

= P 

12 



where Sx, Sy and Sz are the components of the slowness vector for 

an SV wave along the x, y and z axes, respectively; p  is density; 

and C^i, C]^3, C33 and C44 are elastic constants.  Similarly, the 

slowness surface for a P wave is [3] 

C11 + C44    0    0 C33 + C44   9 
(_U ftfL)(S 2 + s 2) + ( ^   ^  )S2

2 

2       x    y 2 

+ 1/2 (CU - C44)(SX
2 + Sy

2) +(C33 - C44)SZ
2 

( 

+4(SX
2 + Sy

2)Sz
2l(Cn - C44)(C33 + C44) 

" (C13 + C44>2 f   " P (15) 

where Sx, S„ and Sz are the components of the slowness vector for 

a P wave along the x, y and z axes, respectively. 

One quadrant of the intersection of the slowness surface of 

an SV wave in the unidirectional fiberglass epoxy composite shown 

in Fig. 1 with the plane x - 0 and one quadrant of the intersec- 

tion of the slowness surface of a P wave in the unidirectional 

fiberglass epoxy composite with the plane x =■ 0 are shown from 

Eqs. (14) and (15) in Fig. 3; where the numerical values of the 

elastic constants and density given in [1] for the unidirectional 

fiberglass epoxy composite are used and are as follow: C^ = 

10.581 x 109N/m2, C13 - 4.679 x 10
9N/m2, C33 - 40.741 x 109N/m2, 

C44 = 4.422 x 10
9N/m2, and p  - 1850 kg/m3. 

13 



3.  Angle of Reflection 

It follows from Eqs. (5) and (6) that the y-component of the 

slowness vector of an incident SV wave is equal to the y-compo- 

nent of the reflected SV wave as well as the y-component of the 

reflected P wave.  Accordingly, the relation between the y-com- 

ponent of the slowness vector of an incident SV wave and the 

y-component of the slowness vectors of the reflected SV and P 

waves is given as 

Syd) = Sy(SV) r  Sy(P) = b (16) 

where Sy'1' represents the y-component of the slowness vector of 

an incident SV wave; Sy's"' represents the y-component of the 

slowness vector of the reflected SV wave; Sy'^' represents the 

y-component of the slowness vector of the reflected P wave; and b 

is a common constant, as shown in Fig. 3. 

It follows from Eqs. (6), (14) and (16) that the relation 

between the z-component of the slowness vector of an incident SV 

wave and that of the reflected SV wave is 

S2(D = - SZ(SV) (17) 

The minus sign is due to the fact that the slowness vector of an 

14 



incident SV wave points out of the medium, whereas the slowness 

vector of the reflected SV wave points into the medium, as shown 

in Fig. 2.  Consequently, the value of the z-component of the 

slowness vector of an incident SV wave, S^1', is negative, 

whereas that of the reflected SV wave, SZ(
SV', is positive. 

The angle of reflection is defined as the angle between the 

slowness vector of a reflected wave, either type P or SV, and the 

normal to the plane boundary where the reflection occurs.  Simi- 

larly, the angle of incidence is defined as the angle between the 

slowness vector of an incident SV wave and the normal to the 

plane boundary, as shown in Fig. 2.  Therefore, the angle of 

reflection of a reflected SV wave 8$y  is defined as 

*sv - tan-l(Sy(SV)/Sz(SV)) (18) 

and the angle of incidence of an incident SV wave 0j is defined 

as 

8T  = tan-1(Sy<
I)/-Sz(

1)) (19) 

It follows from Eqs. (16) through (19) that, for all angles, the 

angle of incidence of an incident SV wave is equal to the angle 

of reflection of the reflected SV wave, as shown in Fig. 2. 

15 



However, the angle of reflection of the reflected P wave is 

not equal to the angle of incidence of the incident SV wave.  For 

a given value of b in Eq. (16), two values of the z-component of 

the slowness vector, Sz, of equal magnitude but opposite sign 

(for a P wave travelling in the plane x - 0 in the transversely 

isotropic medium) can be obtained from the slowness surface for 

the P wave by substituting Eqs. (6) and (16) into Eq. (15).  The 

positive z-component of the slowness vector corresponds to the 

reflected P wave and is denoted as Sz(
p).  Similarly, for a given 

value of b, there exists a positive z-component of the slowness 

vector, Sz(
sv), corresponding to the reflected SV wave.  Accord- 

ingly, for any given value of b in Eq. (16), there exist a posi- 

tive z-component of the slowness vector for the reflected SV 

wave, Sz^ ',   and a positive z-component of the slowness vector 

for the reflected P wave, Sz(
p).  In fact, the z-components of 

the slowness vectors of the reflected SV and P waves, S (sv) and 

sz   > for an incident SV wave which determines the value of b in 

Eq. (16) and which travels in the plane x - 0 in the transversely 

isotropic continuum, can be obtained from the lengths of the per- 

pendicular lines between the abscissa representing the value of b 

and the intersections with the two sheets of the slowness sur- 

faces for the reflected SV and the reflected P waves, respec- 

tively, as shown in Fig. 3.  It is apparent from Fig. 3 that the 

z-component of the slowness vector of the reflected SV wave, 

16 



Sz(
sv), is greater than that of the reflected P wave, Sz(

p), for 

an incident SV wave travelling in the plane x = 0 in the unidi- 

rectional fiberglass epoxy composite [1].  Consequently, the 

angle of reflection of the reflected P wave 0p, defined similarly 

to Eq. (18) as 

8?  - tan-1(Sy(p)/Sz(
p)), (20) 

is larger than the angle of reflection of the reflected SV wave 

for an incident SV wave in the unidirectional fiberglass epoxy 

composite, from Eqs. (16), (18) and (20). 

The critical angle is defined as the angle of incidence of an 

incident SV wave at which the slowness vector of the reflected P 

wave becomes tangent to the plane boundary where the reflection 

occurs.  For the specific case of an incident SV wave in the uni- 

directional fiberglass epoxy composite in Fig. 1, it has been 

shown above that the angle of reflection of the reflected P wave 

is greater than that of the reflected SV wave.  Thus, the criti- 

cal angle phenomenon occurs for this composite.  The critical 

angle for an incident SV wave in the unidirectional fiberglass 

epoxy composite shown in Fig. 1 is equal to 52°.  The angle of 

reflection of the reflected P wave versus the angle of incidence 

of an incident SV wave in the unidirectional fiberglass epoxy 

17 



composite [1] is plotted from zero to the critical angle 52°, as 

shown in Fig. 4. 

4-  Amplitude Ratios of Reflected Waves to Incident Wave for 

Angle of Incidence Less Than Critical Angle 

It has been stated that an SV wave and a P wave will be 

reflected back into the semi-infinite transversely isotropic 

medium if the angle of incidence of the SV wave incident on the 

plane boundary is less than the critical angle.  The stress 

boundary conditions for an incident SV wave whose slowness vec- 

tor is in the plane x = 0 can be rewritten, from Eqs. (4) and 

(7), as 

r  (I) + T     (SV) +   (P) . o ryz   T Tyz    + ryz     u 

(21) 

zz    T 'zz       7ZZ      u 

where r„z^>  and rzz(
I) represent the shear and normal stresses 

associated with the incident SV wave: r^-^V) and r„,,(**V) 

represent the shear and normal stresses associated with the 

reflected SV wave; and ryz(
p) and r2z^

p) represent the shear and 

the normal stresses associated with the reflected P wave. 

The shear stress, fyz^1', associated with an SV wave of unit 

amplitude travelling in the plane x - 0 and incident on the plane 

18 



boundary at the origin, as shown in Fig. 2, can be obtained from 

Eqs. (3) and (6) as 

ry2<D = i«<C55Sz<I>Py<I> + C55Sy(I)pz(D) (22) 

where Pv'^ and Pz' '   are the components of the unit vector of 

particle displacement of the incident SV wave along the y and z 

axes, respectively.  Similarly, the normal stress, rzz' ', 

associated with the incident SV wave of unit amplitude can be 

expressed, from Eqs. (3) and (6) as 

rzz<I> = iW(C13Sy(I)py(D + C33SZ(I)PZ(I)) (23) 

The shear stress, ryz(
sv), and the normal stress, rzz^

SV', 

associated with the reflected SV wave on the plane boundary at 

the origin are, from Eqs. (3) and (6) 

r<SV) . iwA(SV)(C55sz(SV)p (SV) + c55Sy(SV)pz(SV))     (24) 
yz 

and 

rzz<
SV> = iWA(

SV)(C13Sy(
SV)py(

SV) + C33Sz(SV)pz(SV))     (25) 

where Py^
SV^ and Pz^

s^^ are the components of the unit vector of 

particle displacement of the reflected SV wave along the y and z 

19 



axes, respectively; and A^sv) is the amplitude of the reflected 

SV wave. 

The shear stress, ryz(
p', and the normal stress, rzz(

p), 

associated with the reflected P wave on the plane boundary at the 

origin are, from Eqs. (3) and (6), 

ryz(P) = iwA(P)(C55Sz(P)py(P) + C55Sy(P)pz(P)) (26) 

and 

rzz(P) = l^(P)(C13Sy^)py(P> + C33SZ(P)PZ(P)) (27) 

where PyAp) and Pz' ' are the components of the unit vector of 

particle displacement of the reflected P wave along the y and z 

axes, respectively; and A^p) is the amplitude of the reflected P 

wave. 

Upon substitution of Eqs. (22) through (27) into Eq. (21), 

the stress boundary conditions for an incident SV wave of unit 

amplitude travelling in the plane x = 0 can be expressed as 

20 



s^DPyW + SyCDp^D + A(p)(sz(P)py(p) + sy<P>Pz(
p)) 

+ A<SV)(Sz(
SV)py(SV)   + Sy(SV>P2(SV>)  - 0 

(28) 

(CisSyCDPyC1) + C33SZ<I>PZ<
I

>) + A(p)(c13sy(p)py<p) 

+ c33sz(
p>pz(

p>) + A(sv)(Cl3sy(sv)py(sv) 

+ c33sz(
sv)pz(

sv)) - o 

The components of a unit vector of particle displacement 

along the y and z axes of an SV wave travelling in any plane 

containing the zonal axis of a transversely isotropic medium are 

given in [3], and when applied to the present case of the 

reflected SV wave travelling in the plane x = 0, can be expressed 

as 

P (SV) _ HSV - (C33 - C44)SZ<
SV> 

(c13 + c44)sy(sv)sz(sv) 

HSV   -   (C33   -   C44)SZ<SV> 

1/2 

(29) 

P   (SV)  _ (Cl3 + C44)Sy(SV)sz(SV) 

(c13 + c44)sy(sv)sz(sv) 

HSV  "   (C33   "   C44)SZ(SV>' 

1/2 

21 



where Hsv is defined as 

Hsv = (cn - c44)sy<
sv)2 + (c33 - c44)sy(sv)

2 

(cn - c44)s <sv>2+ (c33 - c44)sz(
sv>2 

4Sy(SV)
2sz(SV)

2 

(cu - c44)(c33 - c44) 

(C13 + C44)
2 

1/2' 

Similarly, the components of a unit vector of particle displace- 

ment along the y and z axes for the reflected P wave travelling 

in the plane x = 0 can be expressed as 

P (P) = % " (c33 - C44)Sz(
p)' 

(c13 + c44)s (p>sz<
p) 

Hp - (C33 - C44)S, (P)' 

1/2 

(30) 

P <P) = rz (c13 + c44)sy(
p)sz(

p) 

(c13 + c44)sy(
p)sz(

p) 

Hp - (C33 - C44)S. (P)' 

1/2 
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where Hp is defined as 

Hp = • (Cn - c44)s <p) + (C33 - C44)S, 

+ ' 

(P)" 

<cn - c44)s (p) + (C33 - c44)s. (P)' 

4Sy(
p)2Sz(

P)2 
(cll _ c44)(c33 " c44) 

(C13 + C44)' 
1/2' 

The amplitude ratios of the reflected SV and P waves, A^s") 

and A^p), for an incident SV wave of unit amplitude whose angle 

of incidence is less than the critical angle can be determined 

from Eq. (28).  For a given incident SV wave, the values of the 

components of the slowness vector along the y and z axes, SyA ) 

and Sz^ , and the values of the components of the unit vector of 

particle displacement along the y and z axes, Py'1) and P^1), 

are defined as part of the specification of the incident SV wave. 

The values of the components of the slowness vector of the 

reflected SV wave along the y and z axes, Sy(
SV) and Sz(

sv), are 

determined from Eq. (16) and (17), respectively.  The values of 

the components of the unit vector of particle displacement along 

the y and z axes for the reflected SV wave, Py
(SV) and PZ

(SV\ 
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are obtained by substituting Sy<
sv) and Sz<

sv) into Eq. (29). 

The values of the coefficients for A<sv) in Eq. (28) are thus 

obtained.  Since the y-component of the slowness vector of the 

reflected P wave, Sy(
p), is equal to that of the incident SV 

wave, Eq. (16), the value of the z-component of the reflected P 

wave, S2(
p), is obtained by substituting S t1) into the slowness 

surface for the P wave, Eq. (15).  On substitution of the values 

of Sz(
p) and Sy(

p) into Eq. (30), the values of the unit vector 

of particle displacement along the y and z axes for the reflected 

P wave, Py(
p> and Pz

(p), are determined.  The values of the 

coefficients for A^p) in Eq. (28) are thus obtained.  The values 

of the amplitudes of the reflected SV and P waves, A^sv) and 

A^p), are then obtained by solving Eq. (28) with the thus- 

determined values of the coefficients for A(SV) and A^p) in Eq. 

(28) for a given incident SV wave.  By varying the angle of inci- 

dence of the incident wave.  By varying the angle of incidence of 

the incident SV wave of unit amplitude and by repeating the 

procedures described above, the amplitude ratios of the reflected 

SV and P waves to the the incident SV wave are obtained as func- 

tions of the angle of incidence.  For an incident SV wave in the 

unidirectional fiberglass epoxy composite as shown in Fig. 1, the 

amplitude ratios of the reflected SV and P waves to the incident 

SV wave versus the angle of incidence are plotted in Fig. 5 from 

zero to the critical angle 52°. 
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5.  Existence of Reflected Surface Wave for Angle of Incidence 

Equal to or Greater Than Critical Angle 

It is seen from Fig. 5 that at the critical angle 

52°, the amplitude ratio of the reflected SV wave to the incident 

SV wave is minus one and the amplitude ratio of the reflected P 

wave to the incident SV wave is -2.98 instead of being equal to 

zero.  This suggests the possibility of the existence of a sur- 

face wave travelling parallel to the plane boundary for the angle 

of incidence equal to or greater than the critical angle.  In the 

case of an incident SV wave in a semi-infinite isotropic medium 

with an angle of incidence greater than the critical angle, there 

exist a reflected SV wave and a surface P wave whose amplitude 

decays exponentially with the perpendicular distance from the 

plane boundary [4]. 

Consider an SV wave travelling in the plane x - 0 in the 

semi-infinite transversely isotropic medium which is incident on 

the plane boundary, with the angle of incidence equal to or 

greater than the critical angle.  Assume that there exists a sur- 

face wave travelling parallel to the plane boundary; that is, the 

x-component and the z-component of its slowness vector, Sx and 

S , vanish, whereas the y-component of its slowness vector, Sy, 
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does not vanish, as shown in Fig. 6(a).  Let the reflected sur- 

face wave be represented as 

(u, v, w) = A(S)exp(-C1z)(Px(
S>) Py(

s>, PZ(S)) 

exp{iw(Sy<
s)y - t)} (31) 

where Px^
s), Py'

S' and P2^ ' are the components of a unit vector 

of particle displacement of the reflected surface wave along the 

x, y and z axes, respectively; A'S) is the amplitude of particle 

displacement of the reflected surface wave; Sy^) is the y-com- 

ponent of the slowness vector of the reflected surface wave; and 

Ci is an undetermined real constant which is equal to or greater 

than zero. 

Now, rearrange Eq. (31) into the following form: 

(u, v, w) =A<S>(PX(
S), Py<

S), PZ
(S)) 

exp{ia>[Sy(S>y +  i(C1/w)z]   -t} (32) 

On substitution of Eq.   (32)   into Eq.   (11),  we  find that 

PX(S)  - 0 

[CUS   (s)     -  C44(C1/w)2   -  p]P<S> 
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+ (C13 + C44)Sy<
S>i(C1/u)Pz<

S> - 0 (33) 

<C13 + C44)S (S)i(C1/c;)P <S> 

+ [C44Sy(
S>  - C33(C1/co)

2 - p]Pz(
S> = 0 

The condition for the existence of non-trivial solutions for 

p (S) an(j pz(S) is expressed by setting the determinant of the 

matrix of the coefficients of Py(
S) and PZ^

S^ in Eq. (33) equal 

to zero: 

[CUS <s>  - C44(C1/w)
2 - p]     (C13 + C44)Sy<

s)l(C1/w) 

(C13 + C44)Sy<
s>i<C1/w) [C44Sy<

S)  - C33(C1/W)
2 - p] 

= 0 

(34) 

Expanding Eq. (34), wt. obtain 

c33c44 (Ci/co)- C33(P -        CUSy(S> ) 
(35) 

2 2 
+ C44(p - C44Sy<

s> ) + (C13 + c44)
2s (s) (C]»2 

2 2 
+ (p -  cusy<

s> )(p - c44s (S) ) - 0 

Eq. (35) is a quadratic equation in (C^/w)2; designate its 
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coefficients as follows: 

A = C33C44 

.2 /0,2 
B = c33(P - cnsy(s> ) + C44(p - c44sy(s>') 

+ <c13 + C44)
2Sy<

S> (36) 

2 2 
C - (p   -   CnSy(

S) )(p   - C44Sy<
S) ) 

It is apparent from Eq. (36) that A is always positive. 

By definition, at the critical angle, the angle of reflection 

of the reflected P wave op is equal to 90° [4]; accordingly, 

Sz(
p) in Eq. (20) is equal to zero.  Therefore, the value of b in 

Eq. (16) corresponding to the critical angle is thus determined 

by setting Sx and Sz in Eq. (15) equal to zero, and is found to 

be (p/Cll) ' •  As stated following Zq. (19), the angle of 

reflection of the reflected SV wave 0Sy is equal to 90° when the 

SV wave is tangentially incident on the plane boundary; accord- 

ingly, Sz(
sv) in Eq. (18) is equal to zero.  Therefore, the value 

of b in Eq. (16) corresponding to the incident SV wave whose 

slowness vector is parallel to the plane boundary and is in the 

plane x = 0 is determined by setting Sx and Sz in Eq. (14) equal 

to zero, and is found to be (p/Z^)'   .     The necessary condition 

for the occurrence of the critical angle phenomenon for an SV 
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wave travelling in the plane x = 0 is that the value of 

(P/C44)1/2 has to be greater than that of (p/C11)l/2 [5j  Take 

numerical values of (/3/C44)
1/2 and (p/C11)

1/2 for the 

unidirectional fiberglass epoxy composite shown in Fig. 1 from 

[1] as follows: (P/C11)
1
/2 _ 0.418(s/km) and (p/C^)1/2  - 

0.647(s/km), as shown in Fig. 3.  Therefore, these values satis- 

fying the necessary condition on the occurrence of the critical 

angle phenomenon for an incident SV wave in the unidirectional 

fiberglass epoxy composite. 

It has been shown [5] that when the angle of incidence of an 

incident SV wave travelling in the plane x = 0 is equal to or 

greater than the critical angle, the value of b in Eq. (16) lies 

between (p/C11)
1/2 and (p/C44)

1/2) that is; (p/C11)
1/2 < b < 

(p/C44)
1/2j as shown in Fig. 3.  In addition, it follows from Eq. 

(5) that the y-component of the slowness vector of the reflected 

surface wave, Sy(
s), is equal to b in Eq. (16).  As a result, the 

value C in Eq. (36) is equal to or less than zero when the angle 

of incidence of an incident SV wave travelling in the plane x = 0 

is equal to or greater than the critical angle; that is, C < 0. 

Accordingly, the value of B2 - 4AC defined in Eq. (36) is equal 

to or greater than zero for the angle of incidence equal to or 

greater than the critical angle; that is, 
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B2 - 4AC = B2 + 4A|C| > 0 (37) 

Thus, the possible solutions to the quadratic equation in (Cj/w)2 

in Eq. (35).are 

9       -B ± (B
2 - 4AC)V2 

(Cl/w> —  (38) 

However, it follows from Eq. (37) that the value of B2 -4AC is 

equal to or greater than that of B2 for any angle of incidence 

equal to or greater than the critical angle.  Consequently, the 

solution to (Cj/w)2, from Eq. (38), is 

9   -B + (B
2 - 4AC)X/2 

(c-iAO2 - i  > o 
2A Uy; 

Accordingly, there exists a real constant C]_ given in Eq. (31) 

when the angle of incidence of the incident SV wave travelling in 

the plane x = 0 is equal to or greater than the critical angle, 

and is expressed from Eq. (39), as 

Ci = 
■B + (B2 - 4AC)1/2 

2A *  0 (40) 

The existence of a real constant C^ in Eq. (40) confirms the 

existence of the surface wave assumed in Eq. (31). 

It is therefore concluded that when the angle of incidence of 
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an incident SV wave travelling in the unidirectional fiberglass 

epoxy composite as shown in Fig. 1 is equal to or greater than 

the critical angle, only an SV wave is reflected back into the 

medium, and the reflected P wave degenerates into a surface wave 

which travels parallel to the plane boundary and whose amplitude 

decreases exponentially with perpendicular distance form the 

plane boundary, as shown in Fig. 6(b). 

6.  Balance in Energy Flux Normal to Plane Boundary 

The balance in energy flux normal to the plane boundary must 

be satisfied [2].  For the angle of incidence less than the crit- 

ical angle, the balance in energy flux normal to the plane bound- 

ary z = 0, as shown in Fig. 2, is expressed as [2] 

FZ
(I) + Fz<

p) + FZ<
SV> = 0 (41) 

where F^1) , FZ^
SV^ and FZ^

P^ are the z-components of the energy 

fluxes of the incident SV wave, the reflected SV wave and the 

reflected P wave, respectively. 

The z-component of the energy flux of an incident SV wave of 

unit amplitude travelling in the plane x = 0 is [6] 
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FZ<X>   - W2(C44Py(I)2Sz(D   + C13Py(I)pz(I)Sy(I) 

+ c44p <Dp2a>s a> + c33pz(i)2sz(i)) 

(42) 

Similarly, the z-components of the energy fluxes of the reflected 

SV and the reflected P waves are [6] 

FZ(P) =A(P)
2
w2(C44Py(P)

2Sz(P) + C13Py<P)pz(P)sy(P) 

+ c44p /P)pz(P)sy(P) + c33pz(P)
2sz(P)) 

(43) 

and 

Fz(SV) -A(SV)
2
w2(C44py(SV)

2
Sz(SV) + Cl3Py(SV)pz(SV)Sy(SV) 

+ c44py(sv)pz(sv)Sy(sv) + C33PZ(SV)
2
SZ(SV))  

(44) 

Since the frequency term w2 is common to Eqs. (42), (43) and 

(44), the balance in energy flux normal to the plane boundary, 

Eq. (41), is not affected by assuming the value of the frequency 

w to be equal to unity. Accordingly, subsequent calculations of 

the values of the z-components of the energy fluxes of the inci- 

dent SV wave and the reflected SV and P waves, FZ^T\ Fz(
sv) and 

Fz > are done bv assuming the radian frequency u> to be equal to 

one. 
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The value of the z-components of the energy fluxes in Eqs. 

(42) ,(43) and (44) are obtained similarly to the calculations of 

the amplitude ratios of the reflected P and SV waves to the inci- 

dent SV wave for the angle of incidence less than the critical 

angle.  For a given incident SV wave of unit amplitude, the 

y-components of the slowness vector and of unit vectors of par- 

tide displacement, Sy<I>. Sy<SV) . Sy<
P> , Py<

X> , Py<
SV> and 

Pv(
p), and the z-component of the slowness vectors and of the 

uni it vectors of particle displacement, S^*' , Sz'
t> ' ,   Sz^ ' , 

P t1)  P (sv) and P_(p) of the incident SV wave and the reflected Z      '    Z Z 

SV and P waves are determined first. Then combining the ampli- 

tudes of the reflected SV and P waves, A^sv) and A^p^, with the 

values of Syd> , Sy<SV) , Sy<*) , SZ<D, SZ<SV) . sz<*>, Pyd> , 

P <sv)  pw(
p), P,*1)  P„<sv> and P <P\ the values of the y    *  y   *  z      z « 

z-components of the energy fluxes of the incident SV wave 

and the reflected SV and P waves, F^1), FZ<
SV) and Fz(

p), are 

thus obtained from Eqs. (42), (43) and (44). 

For an SV wave of unit amplitude travelling in the plane x = 

0 in the unidirectional fiberglass epoxy composite shown in Fig. 

1 incident on a plane boundary, the z-components of the energy 

fluxes of the reflected SV and P waves and the energy flux of the 

incident SV wave are plotted in Fig. 7 from zero to the critical 

angle 52°, with the value of the frequency w in Eqs. (42), (43) 
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and (44) equal to one.  The balance in energy flux normal to the 

plane boundary, Eq. (41), is also checked and is shown in Fig. 7. 

When the angle of incidence of an incident SV is equal to or 

greater than the critical angle, only an SV wave is reflected 

back into the medium with its amplitude ratio to the incident SV 

equal to minus one, and the reflected P wave degenerates into a 

surface wave whose energy flux is parallel to the plane boundary 

[6].  As a result, the energy flux normal to the plane boundary 

due to the surface wave is equal to zero.  The balance in energy 

flux normal to the plane boundary z - 0, as shown in Fig. 6(a), 

for the angle of incidence equal to or greater than the critical 

angle is expressed as [2] 

F(I) + F(SV) _ o (45) 

The relationships between the components of the unit vector 

of particle displacement of an incident SV wave travelling in the 

plane x - 0 along the y and z axes, Py( ^ and Pz(*', and those of 

the reflected SV wave can be obtained by substituting Eqs. (16) 

and (17) into Eq. (29) and can be expressed as 

P (I) = P (SV) 
y    y 

(46) 

P (I) = -p (SV) rz      rz 
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On substitution of Eqs. (16), (17) and (46) into Eqs. (42) 

and (44), it is found that 

FzCD _ _FZ(SV) (47) 

Accordingly, the balance in energy flux normal to the plane bou- 

ndary, Eq (45), is satisfied when the angle of incidence of an 

incident SV wave is equal to or greater than the critical angle. 
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ACOUSTO-ULTRASONIC NON-CONTACT INPUT-OUTPUT CHARACTERIZATION OF 

UNIDIRECTIONAL FIBERGLASS EPOXY COMPOSITE PLATE 

It has been shown that the unidirectional fiberglass epoxy 

composite shown in Fig. 1 may be modelled as a homogeneous trans- 

versely isotropic continuum.  For the axes shown in Fig. 1, the 

isotropic plane of the equivalent continuum lies in the midplane 

of the plate [1],  A cartesian coordinate system (x, y, z) is 

chosen so that the x-y plane is the isotropic plane; thus, the 

upper and lower faces are at z = h/2 and z = -h/2, respectively, 

where h is the plate thickness.  The properties of the equivalent 

continuum model of the unidirectional fiberglass epoxy composite 

plate to be considered are [1] 

h  = 0.1 m 

Cu = 10.581 x 109 N/m2 

C13 = 4.67 x 10
9 N/m2 (48) 

C33 - 40.741 x 10
9 N/m2 

C44 = 4.422 x 10
9 N/m2 

C66 = 3.243 x 10
9 N/m2 

p      = 1850 kg/m3 

Non-contact transmitting and receiving transducers are 

located on the same face of a fiberglass epoxy composite plate 
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specimen, as shown in Fig. 8.  The unidirectional fiberglass 

epoxy composite plate specimen is considered as a plate of thick- 

ness h and of infinite planar (x-y) extent.  The input electrical 

voltage to the transmitting transducer is V^(t) and the output 

electrical voltage from the receiving transducer is VQ(t) where t 

represents time.  The transmitting transducer converts an input 

electrical voltage into a stress, whereas the receiving trans- 

ducer converts a displacement associated with stress waves trav- 

elling in the plate into an output electrical voltage.  In the 

following analysis, only the SV waves are traced.  The SV waves 

which are generated by the transmitting transducer located above 

point 0 experience multiple reflection at each face of the plate, 

and then reach the receiving transducer located above point M, as 

shown in Fig. 9.  Since the isotropic plane lies in the midplane 

and is parallel to both the top and bottom faces where the mul- 

tiple reflections occur, the angle of reflection of the reflected 

SV wave is equal to the angle of incidence of an incident SV wave 

for each reflection at each face of the plate.  Accordingly, the 

SV waves travelling from the input 0 to the output M may be con- 

sidered as waves propagating in a semi-infinite transversely iso- 

tropic medium and travelling to point M' as if there were no 

bottom face, as shown in Fig. 9. 
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1.  Delay Time and Phase Velocity 

Let the input 0 and the output M lie in the y-z plane. 

Assume the number of reflections at the bottom face experienced by 

the SV wave in travelling from the input 0 to the output M is n, 

as shown in Fig. 9.  With respect to the z axis, the angle of 

incidence of the SV wave at each face of the plate is 6 ,   and the 

total distance travelled by the wave is R^  From the geometry in 

Fig. 9, 

8  - tan-1(i/2nh) (49) 

where Z  is the separation distance between the input 0 and the 

output M, 

Rn = i/sin* (50) 

The delay time tn for the SV wave to reach the receiving trans- 

ducer is 

tn = Rn/C].(0) (51) 

where Ci(6)   is the directionally-dependent phase velocity of the 

SV wave.  The phase velocity C^ of an SV wave in the unidirec- 

tional fiberglass epoxy composite plate is [1] 

1 tr\ 

Ci(0)  -   [(C44 + Cnsin20 + C33cos20   -  jE)/2p] (52) 
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where 
2 

E = [(CU - C44)sin
20 + (C44 - C33)cos

20] 

+ 4(C13 + C44)
2sin20cos20 ; 

cll> c13> c33> C44 and P  are Siven by Ecl- (48)- 

The phase velocity Cj_ as a function of the angle of incidence 6 

is shown in Fig. 10. 

The delay time is then computed when the number of reflec- 

tions n at the bottom face of the plate is equal to 10, 100, 300 

or 500.  The numerical results are shown in Fig. 11 where the 

delay time tn is plotted as the ordinate, and the dimensionless 

separation Z/h.  is plotted as the abscissa, for values of zero to 

300. 

2.  Displacements Detected by Receiving Transducer 

The displacements detected by the non-contact receiving 

transducer above point M, radiated by the non-contact transmit- 

ting transducer, are assumed to be equivalent to the displacement 

at point M' associated with the SV wave propagating in a semi- 

infinite transversely isotropic medium.  Except for the reflection 

coefficients at each face (to be discussed later), the displace- 

ment is computed as if there were no bottom boundary, as shown in 
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Fig. 9.  The displacement at point M' is approximated by the 

far-field asymptotic solution for large R^ of an infinite trans- 

versely isotropic medium subjected to a harmonic point force. 

Consider an infinite transversely isotropic medium in which 

the z axis of a rectangular cartesian coordinate system 0(x, y, 

z) is the zonal axis of the medium, and the x-y plane coincides 

with isotropic plane, as shown in Fig. 12.  The equations of 

motion including the body force are [7] 

Txx,x + Txy,y + rxz,z + Px  = /»*." (53) 

rxy,x + ryy,y + ryz,z + PY ~  ^v'tt: (54) 

rxz,x + ryz,y + rzz,z + PZ = pw.tt (55) 

where rrs (r, s = x, y and z) are the normal (r = s) and shear 

(r *  s) stresses with respect to the chosen coordinate system 

0(x, y, z); u, v and w are displacement components of a point in 

the medium along the x, y and z axes, respectively; X, Y and Z 

are the components of the body force along the x, y and z axes, 

respectively; p  is the density; t is time ; and "," denotes 

partial differentiation with respect to the variable which fol- 

lows . 

40 



Combining Eqs. (1) and (55) gives 

C13 + C44 C44 C44 
      -•)   J- .>> 

(56) 

rtt- (— ^-) A,zz + (—==-) r.xx + <—=-) r.yy 

Coo 
+ (——) r,zz + z,z 

p 

where T and A are given by [6] 

T = w,z  and A = u,x + v,y . 

By differentiating Eq. (53) with respect to x and Eq. (54) with 

respect to y, we find, on addition of the resulting equations and 

using the appropriate stress-strain relation, Eq. (1), that 

Ci o + CAA                c44 
A,tt =(— —) (r,xx + r.yy) +  A,zz 

9 P 
(57) 

C11 
+ -±±   (A,xx + A,yy) + X,x + Y,y 

9 

For a harmonic point force at the origin, the body forces may 

be taken of the form [7] 

X = X05(x)5(y)5(z)e-iwt 

Y = Y06(x)5(y)S(z)e ■iut (58) 

Z = Z0S(x)5(y)6(z)e-
iwt 

where 6(r) (r - x, y and z) is the Dirac delta function. 
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Express F  and A as threefold Fourier Integrals [7] as 

follows: 

r(x,y,z,t) I (Sj£ , Sy , S^ > t) 

exp{iw(Sxx + Syy + Szz - t)}dSxdSydSz 

(59) 

A(x,y,z,t) = A(Sx,Sy,Sz>t) 

exp{iw(Sxx + S„y + Szz   -   t)}dSxdS„dSz 

where 

r(Sx,Sy,Sz,t)   = 1/8JT
: r(x,y,z,t) 

exp{iw(-Sxx  -   S„y  -   Szz +  t)}dxdydz. 

A(Sx,Sy>Sz>t)   -  l/87r: A(x,y,z,t) 

exp{iw(-Sxx - Syy - Szz + t)}dxdydz. 
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Similarly, X,x, Y,y and Z,z can be expressed as threefold Fourier 

integrals 

X,x = iwS x exp{iw(Sxx + Syy + Szz - t)}dSxdSydSz (60) 

Y,y -  icoS Y exp{iw(Sxx + Syy + Szz   -   t)}dSxdSydSz (61) 

Z,z =  icoSj Z exp{iw(Sxx + Syy + Szz   -   t)}dSxdSydSz (62) 

where 

X = l/8n: X0S(x)5(y)S(z)e ■iwt 

exp{iw(-Sxx  -   Syy  -  Szz + t}dSxdSydSz - X0/8TT
: 

and,   similarly,   Y - Y0/8TT
3
;   Z = Z0/8TT

3
. 
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Substitution of Eqs. (58) through (62) into Eqs. (56) and (57) gives 

C44/p(Sx2 + Sy
2) + C33/pSz2 -1 

=  a 3 u/c c g N  <lSxxo + lSyYo> 87T-,wH(Sx,SyiSz) 
(63) 

.  -<C13 + %0/P   (sx2 + sy2)   .Q  7 

87r3a;H(Sx,Sy,S2) 

■(C13  + C44)/p  s2 

87T3wH(Sx,Sy,Sz) 
(iSxXQ +  iSyY0) 

CU/P(SX
2 + Sy

2)  + c33/Psz
2  -1 

+  ä  lb_£Q 
87ria)H(Sx,Sy,Sz) 

(64) 

where 

H(SX,Sy,Sz) 
c44 

. P 
Sz
2 + — (Sx

2 + Sy2) - 1 

^(  2 + s 2) + ^_3S 2 .x (65.) 

(°44 + °13)2 SZ
2(SX

2 + S 2) 

In fact, H(SX, Sy, SZ) - 0 represents the two sheets of slowness 

surface, one for a P wave and one for an SV wave [8].  As a 

result of Eqs. (63) and (64), 
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r(x,y,z,t) = 
(C13 + C44)/p sz< 

[    87T3wH(Sx,Sy,Sz) J 
(iSxX0 + iSyYQ) 

Cll/P(sx2 + Sv2) + c33/^sz2 -1 

87r3wH(Sx,Sy,Sz) 
iszZo 

exp (iw(S„x + Svy + Szz - t)} 

(66) 

A(x,y,z,t) = 
' c44/P(sx

2 + Sy
2) + c33/ps2

2 -1 

87T3wH(Sx,Sy,Sz) 
(iSxX0 + iSyY0) 

'-(C13 + C44)/p (Sx
2 + Sy

2) 

87r3wH(Sx,Sy,Sz) 
iSzZo 

(67) 

exp{iw(Sxx + Syy + Szz - t)} 

The asymptotic solution at a large distance from the point 

force is obtained by applying the theory of residues, the method 

of stationary phase, and the radiation condition [8] as 

r(x,y,z,t) 
w  N 

2TTR n=l 

(C13+C44)   2,.  x iS y ) 
  bzn v1'5xnAo+:L':'yn10'' 

"11 
(Sxn 

+ Syn ) +' 
'33 

szn " l *-sznZo 

(68) 

exp{iw(Sxnx + Syny + Sznz - t)} 
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w  N      f 
A(x,y,z,t) = ~ —- 2 AnAn 1 

2TTR n=l    (_ 
^<sxn*+ syn*> +i» szn2- i 

(C13+C44)    2  „  2, 
(iSxnX0+iSynY0) +   

13^ 44  (Sxn
2
+ Syn

2) iSznZ0| 

exp{iw(Sxnx + Syny + Sznz - t)} (69) 

where R is the distance from the origin 0 where the point forces 

are applied to the location of interest Q in the medium, as shown 

in Fig. 12; (Sxn, Syn, Szn) are points on the slowness surface 

for an SV wave where the normal is parallel to the OQ direction; 

N is the total number of points (Sxn, Syn, Szn) are points over 

which the summation must be performed ; An is the amplitude 

coefficient and is given by 

f H,SX
2 + H,S 2 + H,S 2 ") 

where ^ is given as 

2> kn - S [H,SZ^(H,SXSX H,SySy - H,SxSy^) 

+ 2H,SX H,Sy(H,SxSz H,SySz - H,SxSy H,SZSZ)] 

(71) 

where 2 denotes the sum with respect to cyclic permutation of Sx, 

Sy and Sz; the symbol | | denotes "the magnitude of"; An is 

evaluated at points (Sxn, Syn, Szn) on the slowness surface for 
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an SV wave where the normal is parallel to the OQ direction, 

exclusive of those singular points (Sxn, Syn, Szn) resulting in 

Kn in Eq. (71) equal to zero; and An is the phase constant and is 

determined as follows:  An = 1 if Kn > 0 or An = i if Kn < 0. 

The displacement components along the x, y and z axes, u, v 

and w due to an SV wave can be obtained by direct integration of 

the definition of T  and A in Eq. (56), and are given as [8] 

Sx     A u -  s R A 
iw(Sx

z + Sy
z) 

v h , A (72) 
iw(Sx

Z + Sy
z) 

1 
w r 

iwSz 

Substitution of Eqs. (68) and (69) into Eq. (72) gives the 

asymptotic solutions at a large distance to the displacement com- 

ponents along the x, y and z axes, u, v and w, as follows: 

J.N      [     Sxn 
2*R n-l" n I (Sxn

2 + Syn
2) 

^(S„J +  S  2) +^~   S  2 . ! 
I P P 

zn 

(iSxn
2X0+iSyn

2Y0) +  "(Cl^+C44)(Sxn
2 + Syn

2) iSzn
2 Z0 

exp{iw(Sxnx + Syny + Sznz - t)} (73) 
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•i  N £n_ 
2*R n^A^ (Sxn* + S^) 

^(Sxn2 + Syn2)+^1 
I /> 

<; z - i 

(iS 2X ,,o 2Y >, + ~(C13+C44) ,       2   .   Q  2N « l"xn xo+Lbvn Yo-) +   (Sxn + Svn ) 1 yn "o xn  ' "yn '   x^zn^o 

exp{iw(Sxnx + S^y + Sznz - t) (74) 

1 N 
w ~  —     S ^n 27rR    n=l 

-(c13+c44) 
Szn(iSxnxo+iSynYo) 

+ ( —(Sxn
2  +  S     2)   + Ü2_3   s     2   .   x 'xn     '   "yn zn ■>Z0 

P ' P 

exp(io>(Sxnx + S^y + Sznz   -   t) (75) 

3.  Directivity Functions 

The shear stress rvz and the normal stress rzz associated 

with the SV waves reaching the point M' in Fig. 9 are used to 

study their associated directivity functions.  The asymptotic 

shear stress ryz and the asymptotic normal stress rzz are given 

fry substituting Eqs. (68) through (72) into Eq. (1) as 

zz 
w  N      (       [■ 

- 55 A*"*»!0»" 
(c13+c44)    o 
 "  szn <isxnxo+isynY°> 

lL(s 2 + s 2 v .£33   2 
^öxn  + &yn -> +  bzn 

P P 
lSznZo 
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'13 
C44 

L P 
(V + Syn > + 

2^ + 3l_   s  2.0 Szn2 " 1 (^nV^ynV 

+ ^W (Sxn2 + Syn2) iSznZo]J 
exp{iw(Sxnx + Syny + Sznz - t)} (76) 

C55W    N 
rv-  _       2 AnAn • 
yz       2TTR    n-1 

'yn 
(0^3+0^4)    2 
  szn (iSxnxo+isynYo) 

JU. 
+ (—-<SXn

2 + Syn2) +—    S^n2 " 1>iZo 
P P 

Syn^zn 
3xn T °yn 

[— <Sxn
2 + S 2) +£33 Szn2 . 1](iSxnxo+iS Y0) 

P y P 

♦ '-^y^   (Sxn2 + V2> «»*.]} 

exp{iw(Sxnx + Syny + Sznz - t)} (77) 

The directivity functions associated with the normal stress 

rzz in Eq. (76) and the shear stress T„Z in Eq. (77) will be 

evaluated for the case of Sx = 0.  Due to the axial symmetry with 

respect to the zonal axis, the z axis, of the transversely iso- 

tropic medium, the values of the directivity functions thus 

obtained hold for all values of Sx. 

Consider the case of the point force acting along the y 
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direction only; that is, Y0 ■* 0 but X0 - ZQ - 0 in Eq. (58). 

Y 
The directivity function Dyz of the shear stress ryz 

associated with an SV wave is evaluated from Eq. (77) along the 

9   9 arc y' + z^ = 1 in the positive y-z quadrant by setting YQ = R 

wC 
Dyz =   o J 2ir 

55 N -C13 2       C33 2 
s,   Vnszn( syn    + szn    "   1) 

n=l P p 

exp{iw(Syny + Sznz)} (78) 

where the summation S is done vectorially in a complex plane over 

each type of wave passing a given point (0, y, z) on the arc y2 + 

o 
z^ = 1; each wave corresponds to a point (0, Syn, Szn) on the 

slowness surface of an SV wave at which the normal is parallel to 

the radius vector of the given point (0, y, z).  Similarly, the 
Y 

directivity function Dzz of the normal stress rzz is, from Eq. 

(76), for Y0 - R - 1; 

Y      W 
Dzz -7- 

N 

n=l yn 
C13C44 _ 2  C33c44 _ 2 

yn 'zn -C 13 

exp{Iw^Syrf + Sznz)} (79) 

Next, consider the case of the point force acting along the z 

direction only; that is, ZQ *  0 but X0 - YQ - 0 in Eq. (58). 

Z 
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The directivity function Dyz of the shear stress ryz 

associated with an SV wave is evaluated from Eq. (77) along the 

arc y2 + z^ = 1 in the positive y-z quadrant by setting ZQ - R = 

i; 

uC 

"y*- 2„ 
55 N 

s
n
AnAnsyn n=l    J 

ils  2 3 byn + 

P      J 

C44 ILs 2.1 bzn  i 

exp{iw(Syny + Sznz)} (80) 

Similarly, the directivity function DZ2 of the normal stress rzz 

is, from Eq. (76), for ZQ = R = 1; 

'zz 
2TT 

N 
2
n An

AnSzn n=l 

cllc33 -c13c44 -c13  _  2 

'33 
'zn ;33  exp{iw(Syny + Sznz)} 

(81) 

Finally, consider the case of the point force acting along the 

x direction only; that is, XQ * 0 but Y0 = ZQ = 0 in Eq. (58). It 

follows from Eqs. (76) and (77) that the values of the shear 

stress rvz and the normal stress rzz associated with an SV wave 

travelling in the plane x - 0 are equal to zero. 

The polar diagrams for the directivity functions of the shear 
Y   Y   Z      Z 

stress ryz and the normal stress rzz (Dyz, Dzz, Dyz and Dzz given 
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in Eqs. (78) through (81) ) associated with the SV waves propa- 

gating in the unidirectional fiberglass epoxy composite as shown 

in Fig. 1 are obtained by substituting Eq. (48) into Eqs. (78) 

through (81) at frequencies of 0.75, 1.50 and 2.25 MHz. 

Numerical results are shown in Figs. 13 through 24 where the 

angle of incidence 9  given in Eq. (49) is used to determine the 

direction in which the values of points (0, Syn, Szn) on the 

slowness surface, where the normal is parallel to the given 

direction, is thus obtained. 

4.  Assumptions of Transducers 

The non-contact transmitting transducer in Fig. 8 is assumed 

to transform an electrical voltage into a uniform stress; how- 

ever, the non-contact receiving transducer in Fig. 8 transforms a 

displacement into an electrical voltage.  The approach below is 

similar to that given in [9].  Referring to Fig. 8, if an input 

voltage of amplitude of V and frequency w is applied according to 

Vi(t) = Ve-iwt . (82) 

The stress a  that is introduced into the specimen plate by the 

non-contact transmitting transducer is 
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<7<t) = F1(w)Ve-
i(wt + *1> (83) 

where F^(w) is the transduction ratio for the non-contact 

transmitting transducer in transforming a voltage to a stress 

and 0X is a phase angle.  In Eqs. (82) and (83), the complex 

harmonic character of the signals is expressed in the complex 

notation where i = 7-1 and only the real part of these and 

subsequent equations should be considered.  Thus, the amplitude T 

of the applied load is defined as 

T = F1(w)V (84) 

Similarly, if a stress wave producing a displacement d of 

amplitude D and frequency w that is detected by the non-contact 

receiving transducer is defined as 

d(t) = De-iwt (85) 

the output voltage from the non-contact receiving transducer, see 

Fig. 8, is 

V0(t) = F2(co)De-
i(wt + +2> (86) 

where F2(w) is the transduction ratio for the non-contact 

receiving transducer in transforming a displacement to a voltage, 

and <f>2  is a phase angle.  Thus, the amplitude V of the output 
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electrical voltage is 

V = F2(w)D (87) 

The characteristics of F1(w)F2(w) are unknown except that the 

dimensions of the product F^(w) are [kg/m^«sec^]. 

5-  Steady-State Output Voltage Amplitude due to Multiple Wave 

Reflections in Plate 

Since the SV wave traced in the unidirectional fiberglass 

epoxy composite plate specimen shown in Fig. 9 is travelling in 

the y-z plane, it follows from Eqs. (73), (74) and (75) that only 

the displacement components along the y and z axes, v and w, are 

detectable at the point M' .  Consider first the point force 

acting along the y direction only; that is YQ *  0 but XQ = Z =0 

in Eq. (58). 

The amplitude of the y-component displacement D^ evaluated at 

the point M' can be obtained from Eqs. (50) and (74) as 

nY   
fl(syn- szn> v Dv L-  YO (88) 

Kn 
where 

fl(Svn> S2n) - 1/2«- Jyn' "zn; r^l\lxn[(chh/p)syn
2 + (c33/P)szn

2 - 1] 

exp{ia>(Syny + Sznz)} 
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and is evaluated along the arc y2 + x2 - 1.  Similarly, the 
Y 

amplitude of the z-component displacement Dw evaluated at the 

point M' can be obtained from Eqs. (50) and (75) as 

'w 

f2^Syn- Szn) 

Rn 

(89) 

where 

f2<Syn' Szn) = l/2* 
N 
S    VnKC13 + c44)/p]SynSzn 

n=l 

exp{iw(Syny + Sznz)} 

Next, consider the point force acting along the z direction 

only; that is Z0 * 0 but X0 = Y0 - 0 in Eq. (58). 

2 
The amplitude of the y-component displacement Dv evaluated at 

the point M' can be obtained from Eqs. (50) and (74) as 

_ f2^syn» szn) 
Jv 

(90) 

Rn 

Similarly, the amplitude of the z-component displacement Dw 

evaluated at the point M' can be obtained from Eqs. (50) and (75) 

as 

7   f3^Svn' Szn) „ 
n  =   Lr 'W 

(91) 

Rn 

where 

f3(syn> Szn) " l'2* 
S    AT1An[(C11/p)S     2 +  (C33/p)Szn

2 

n=l 
1] 
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exp{iw(Syny + Sznz) 

Finally, consider the point force acting along the x direc- 

tion only; that is, X0 *  0 but YQ = ZQ - 0 in Eq. (58).  It 

follows from Eqs. (74) and (75) that the amplitude of the y-com- 

ponent displacement and the amplitude of the z-component dis- 

placement vanish at the point M' .  This is due to the fact that 

the SV wave is travelling in the y-z plane. 

According to Eqs. (88) through (91), the amplitude of a dis- 

placement component at the point M' , denoted as D^/ , can be 

expressed in the following form as 

_ fl(Syn, s2n) T 

where T is the applied point force and is equivalent to either Y0 

or Z0 in Eqs. (88) through (91); and f^S^, Szn) (i - 1, 2 or 3) 

is determined from one of Eqs. (88) through (91), depending on 

which displacement component is measured and along which direc- 

tion the point load is applied. 

However, with the bottom boundary present, the wave is 

reflected a total of (2n -1) times, as shown in Fig. 9.  Thus, 

the amplitude of displacement at the point M is D^ and is 

expressed as 
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% = Qsvsi % <93> 

where Qgvsv is the amplitude ratio of the reflected SV wave to 

the incident SV wave, as shown in Fig. 5, and is a function of 

the angle of incidence 6  defined in Eq. (49).  Here, we have 

ignored the effects of mode conversion. 

The amplitude of the output voltage form the non-contact 

receiving transducer is V and can be obtained by substituting 

Eqs. (92) and (93) into Eq. (87) as 

2n-l 
_  ^(^QsVSV fi(Svn- Szn>  T (94) 

Substitution of Eq. (84) into Eq. (94) gives 

v, = F1(u))F2(u>)QSySV f^Syn, Szn) V (g5) 

Rn 

Introducing the SV wave attenuation constant a of the unidirec- 

tional fiberglass epoxy composite and a possible electrical sig- 

nal amplification factor K, Eq. (95) can be written as 

2n-l              e"QRn 
V = KF1(W)F2(«)QSVSV fi(Syn, Szn)V  (96) 

Eq. (96) gives the output voltage amplitude from the non-contact 
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receiving transducer due to an input voltage amplitude V at the 

non-contact transmitting transducer when the SV wave path has 

undergone n reflections from the bottom face of the unidirec- 

tional fiberglass epoxy composite plate specimen, as shown in 

Fig. 9. 

58 



DISCUSSION AND CONCLUSION 

In the acousto-ultrasonic input-output characterization of the 

unidirectional fiberglass epoxy composite plate, the angle of 

reflection of the reflected SV wave is equal to the angle of 

incidence of the incident SV wave for each reflection at either 

the top or the bottom face of the plate.  This is due to the fact 

that the isotropic plane is parallel to both faces of the plate. 

However, if the parallelism between the isotropic plane and the 

plane boundaries where reflection occurs does not exist, the 

angle of reflection is not equal to the angle of incidence.  In 

such a case, the use of a semi-infinite transversely isotropic 

medium, neglecting the existence of the bottom face of the plate 

except for the cumulative reflection coefficients, to compute the 

delay time, the displacements and the directivity functions 

becomes inappropriate. 

For an SV wave travelling in an isotropic medium, its phase 

velocity is a constant value; that is, its phase velocity is 

directionally independent.  However, as shown in Fig. 10, the 

phase velocity C^ of an SV wave travelling in a unidirectional 

fiberglass epoxy composite plate is a function of the angle of 

incidence 8.     Consequently, the directional dependence of the 

phase velocity of an SV wave in the unidirectional fiberglass 
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epoxy composite plate has an effect on the delay time when con- 

ducting acousto-ultrasonic input-output characterization.  This 

phenomenon can be observed at low values of dimensionless separa- 

tion i/h in Fig. 11, where sharp increases in delay time tn are 

caused by an increase in the number of reflection n from the bot- 

tom face of the plate at a given value of the dimensionless sepa- 

ration i/h. Low values of dimensionless separation i/h correspond 

to an angle of incidence 6   (given in Eq. (49)) whose value is 

less than 60° which is the abscissa of the maximum phase velocity 

Clt as shown in Fig. 10.  For angles of incidence 9  less than 

60°, the phase velocity Cx increases with increasing angle of 

incidence 6,   as shown in Fig. 10.  However, an increase in the 

number of reflections n from the bottom face of the plate for a 

given plate thickness h and a given separation distance i results 

in a decrease in the angle of incidence 8  given by Eq. (49), 

thereby increasing the travelling distance 1^ according to Eq. 

(50) and decreasing the accompanying phase velocity.  The 

increase in the travelling distance 1^ and the decrease in the 

phase velocity CL account for the sharp increases in the delay 

time tn at low values of dimensionless separation i/h.  For the 

case of an SV wave travelling in an Isotropie medium, the 

increase in the delay time tn caused by an increase in the number 

of reflections n is attributed solely to the increase in the 

travelling distance B^. 
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Consider the case of a given number of reflections n.  For a 

given plate thickness h, an increase in the separation distance £ 

results in an increases in the travelling distance R^ as shown 

in Fig. 9, and an increase in the angle of incidence 9  given by 

Eq. (49).  An increase in the angle of incidence 9  may result in 

an increase or a decrease in the SV-wave phase velocity Clt 

depending on whether the angle of incidence 6   is less than or 

greater than 60°, as shown in Fig. 10.  However, as the separa- 

tion distance £  approaches infinity, the angle of incidence 9 

will approach 90°, and the phase velocity C^ will reach a limit, 

as shown in Fig. 10.  Consequently, (for J/h - •) the increase in 

the delay time tn is due almost exclusively to the increase in 

the travelling distance Rn,  which is similar to the isotropic 

medium case. 

This theoretical investigation provides a step forward in the 

quantitative understanding of acousto-ultrasonic nondestructive 

evaluation (NDE) parameters such as the stress wave factor (SWF) 

in transversely isotropic media.  It also provides the potential 

for assisting in the development of more efficient and more 

revealing NDE schemes utilizing wave propagation. 
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Fig. 1  Unidirectional fiber reinforced composite modelled as 
transversely isotropic medium. 
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z 
1, 

Slowness vector of 
incident SV wave Slowness vector of 

reflected SV wave 

Slowness vector of 
reflected P wave 

**y 

Fig. 2  Coordinate system (x,y,z) in the analysis of single 
reflection problem at stress-free plane boundary of 
semi-infinte transversely isotropic medium for angle 
of incidence less than critical angle; z=0 is plane 
boundary where single reflection occurs, z<0 is free 
space, and x= 0 is plane of incidence. 

64 



(\J 

(A 

o 
in 

c 
o 

N u 
O <u 

k_ 
• M» 

-o 
>N 

c • ^ 
O w. 
O o 
m u 
O > 

tfl 
(/> 
cu 
c 
$ 

O o 
in c/> 

CU 
c o 
Q. 
E o o 

o m CVJHJN 
(0 (/) 

o 
O 
m 

o O 

m O --» m 
r^- m a. 

w N CVJ 
ro 04 (/) — 
O O o 

(uu>i/s)zs 
U0UD3JI.P  Z U!  J0133A SS3UM0|S   JO iU3U0dUJO0 

en 
en 
cd 

öO 
1-4 
0) 

^3 
•H 

.H 
cd 
C 
o 

•H 
•U 
0 
0) 
l-i 

•H 
T) 
•H 
fi 
3 
C 

•H 

tn 
cu 
> 
01 
& 
> 
Crt • 

4J 
-rt C 
C cd 
CO U 

Tl 
CU CO 

3 
u cr 
o 

M-4 N 

cu ^ 
o 
ca cu 

4-( > 
t-l •H 
3 4-1 
en •H 

en 
en o 
en a 
0J 
Ö u 
3 o 
O y-i 

i-H 
cn cu 

•u 
m •H 

' o cn 
o 

en & 
■u e 
OJ o 
cu u 
j= 
en >% 

X 
o 0 
Es a 
H OJ 

<n 

60 
■H 

65 



(99j63p)d0   4U0!JD9|J3J   JO  3|6UV 

u c 
<u • 

T3 <u 
•H 4-1 
O •H 
C co 

•H 0 
a 

4-t B o o 
o 

QJ 
■H >! 
M X 
C o 
ca a 

CU 
to 
3 CO 
03 CO 
!-i m 
0) iH 
> 60 

M 
0) cu 
> rd 
tfl •H 
3 M-l 

O. ■H 
Cfl 

•ü c 
OJ O 
•p •H 
o 4-1 
0) O 

r-t CU 
<+-l U 
a; •H 
M T) 

•H 
IH C 
o 3 

c C 
o •H 

•H 
4J a) 
U > 
CU !fl 

<-i 3 
U-t 
m > 
u cn 

4-1 •w 
o c 

aj 
CU T1 

rH •H 
an c; 
C C 
< •r-t 

00 
•H 

66 



> 
(A) 

< 

V 
> * 
o 
5 > 

o 
> $ 
in 0- 
•a ■o 
0) <« 
o u 
0) 0) 

iil_L • _ilL_  «oiiDJ 3pnt||dujv 
(d)' (Asr 

en  oo 
3    C 
en   «j 
V-< 
QJ   S-i 

>  o 
IW 

<u 
>    QJ 
CO   4J 

S  -H 
Cß 

>  o 
en   o- 

e 
4-1    O 
c o 
QJ 

X)   >> 
■H    X 
ü  o c a. 
•H    QJ 

o  en 
4J  en 

cö 
en in 
11   00 
>  * 
CO   0) 
S    rO 

•H 
P-<   M-J 

•a -H 
C   efl • 
cD   C QJ 

0 r-l 
>  -H 00 
C/}    4J c 

O CO 
T3   0) 
0)   S-J rH 

4-1   -H CO 
O   T3 O 
QJ   -H •H 

rH     C 4J 
u-t   3 •H 
0) ,-J 
M   C Ü 

•H 
M-l C 
O   QJ CO 

O Ä 
en   C 4J 
O   QJ 
•H -a en 
4-1   -H en 
CO    O 0) 
!-i   C rH 

•H 
QJ QJ 

-O  U-i u 
3    O C 
4-1 01 
•H    QJ T1 
rH   r-( •H 
a- 01 Ü 

€     ö Ö 
<2     CO ■H 

oo 
•H 

67 



P wave 
amplitude decreases 
exponentially with z 

i, z 

Slowness vector 
of incident 
SV wave Slowness vector 

of reflected 
SV wave 

Slowness vector 
of reflected 
P wave 

Reflected surface Pwave 

(b) 

Fig. 6  Existence of reflected surface P wave whose amplitude 
decreases exponentially with z for angle of incidence of 
incident SV wave in unidirectional fiberglass epoxy 
composite, equal to or greater than critical angle 9C; 
z= 0 is plane boundary where single reflection occurs, 
z< 0 is free space, and x= 0 is plane of incidence. 
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Fig. 9  Path of SV - SV - ... wave which arrives at point M 
after n reflections from bottom boundary. 
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Fig. 12  Schematic illustrating sinusoidal point load exciting 
infinite transversely isotropic medium, where xy plane 
is isotropic plane in cartesian coordinate system 
defined by 0(x,y,z). 
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